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Autophagy is a physiological degradative process key to cell survival during nutrient deprivation, cell
differentiation and development. It plays a major role in the turnover of damaged macromolecules and
organelles, and it has been involved in the pathogenesis of different cardiovascular diseases. Activation of the
adrenergic system is commonly associated with cardiac fibrosis and remodeling, and cardiac fibroblasts are
key players in these processes. Whether adrenergic stimulation modulates cardiac fibroblast autophagy
remains unexplored. In the present study, we aimed at this question and evaluated the effects of b2-
adrenergic stimulation upon autophagy. Cultured adult rat cardiac fibroblasts were treated with agonists or
antagonists of beta-adrenergic receptors (b-AR), and autophagy was assessed by electron microscopy, GFP-
LC3 subcellular distribution, and immunowesternblot of endogenous LC3. The predominant expression of b2-
ARs was determined and characterized by radioligand binding assays using [3H]dihydroalprenolol. Both,
isoproterenol and norepinephrine (non-selective b-AR agonists), as well as salbutamol (selective b2-AR
agonist) increased autophagic flux, and these effects were blocked by propanolol (b-AR antagonist), ICI-
118,551 (selective b2-AR antagonist), 3-methyladenine but not by atenolol (selective b1-AR antagonist). The
increase in autophagy was correlated with an enhanced degradation of collagen, and this effect was
abrogated by the inhibition of autophagic flux. Overall, our data suggest that b2-adrenergic stimulation
triggers autophagy in cardiac fibroblasts, and that this response could contribute to reduce the deleterious
effects of high adrenergic stimulation upon cardiac fibrosis.
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1. Introduction

Macroautophagy (herein referred to as autophagy) represents a
highly conserved cellular process among eukaryotes, which consists of
the degradation of cytoplasmic elements such as long-lived, damaged,
or aggregated proteins, as well as complete organelles. The engulfment
of these elements within double-membraned structures called autop-
hagosomes is followed by its fusion with the lysosome, where it ends
with the enzymatic degradation of the autophagosomal inner mem-
brane and its cargo. Broken-down elements return to the cytosol as
macromolecules that serve for the synthesis of new structures [1].
Although autophagy primarily represents an essential homeostatic
mechanism activated in face of different stress conditions, it can also
contribute to execute an infrequent form of programmed cell death
(named type-II or autophagic cell death), which is characterized by
abundant vacuolization and is definedby its inhibitionwhen autophagic
Atg genes are inactivated [2,3]. In the heart, basal autophagy contributes
to the maintenance of cellular energy by the physiological turnover of
essential metabolic organelles such as mitochondria or peroxisomes,
but it becomes strongly upregulated in response to nutritional
challenges, a condition frequently associated to pathological states
such as cardiac remodeling/hypertrophy [4], or imposed by others such
as ischemic disease [5] or myocardial infarction [6]. Current theories
support a protective role of autophagy in the heart rather than a
detrimental one [7], however, most of the evidence gathered thus far
has been obtained from the study of cardiac myocytes, whereas to date
there exist very few studies focused on fibroblasts. Cardiac fibroblasts
represent 2/3 of the cardiac cellular population, and they play important
roles by regulating structural, biochemical, mechanical and electrical
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properties of the heart [8]. A major one among these functions is the
maintenance of the heart tissue, which is achieved by regulating the
homeostasis of the extracellular matrix, as well as by the production of
factors involved in maintaining the balance between synthesis and
degradation of connective tissue components such as collagen,
cytokines, growth factors and matrix metalloproteinases [9].

The beta-adrenergic receptor (b-AR) signaling pathway plays a
key role in regulating cardiac function; their stimulation by
catecholamines provides the most important regulatory mechanism
for cardiovascular performance [10]. The mammalian heart expresses
primarily b1-AR (75–85%), although a substantial number of b2-AR
and b3-AR can be detected in cardiac tissue [11,12]. The three
subtypes are present in cardiac myocytes, in which b1-AR is the
predominant subtype. However, in cardiac fibroblasts, the most
expressed b-AR subtype is the b2-AR [13]. Indeed, b-ARs have been
identified on both neonatal and adult rat cardiac fibroblasts, and
their stimulation by b-adrenergic agonists promotes DNA synthesis
[14–16] and modulates collagen secretion [17]. Whether adrenergic
stimulation regulates cardiac fibroblast autophagy remains unex-
plored. In the present study, we aim at this question and evaluated
the effect of b2-AR stimulation upon autophagy, by using primary
cultured adult rat cardiac fibroblasts. The results presented here
indicate that specific b2-AR activation leads to a significant increase
in autophagic flux, which increases collagen degradation, thus
playing a crucial role in the maintenance of the cardiac extracellular
matrix homeostasis.

2. Materials and methods

2.1. Cardiac fibroblast isolation

Animal handlings were performed conforming to the Guide for the
Care and Use of Laboratory Animals (NIH publication No. 85-23). Male
Sprague–Dawley rats (250 g) were anesthetized with ketamine-
xylazine (66 mg/kg and 1.6 mg/kg i.p., respectively). Adult rat cardiac
fibroblasts (ACFs) were isolated by retrograde aortic perfusion as
described previously [18], with a fewmodifications. Briefly, the hearts
were digested with a collagenase-hyaluronidase (1:1) containing
solution and cells centrifuged at 500 rpm for 1 min. The supernatant,
containing mainly ACFs, was centrifuged at 1,000 rpm for 10 min and
then resuspended in DMEM F-12 plus 10% FBS and seeded in non-
treated culture dishes during 2 h. The cells were washed with PBS in
order to eliminate debris and non-adherent cells. ACFs were used at
passage 1, and seeded on plastic dishes at density of 2×104 cell/cm2.

2.2. Collagen assays

For collagen imaging, ACFs were seeded in coverslips, subjected to
different treatments and fixed with 4% paraformaldehyde. The
fluorescence imaging of cells was conducted in a Zeiss LSM-5, Pascal
5 Axiovert 200 confocal microscope. For collagen quantification via
immunowesternblot, ACFs were seeded in 60 mm culture dishes,
lysed in 10 mM Tris–HCl pH 7.5, 10 mM EDTA, 0.4% deoxycholate, 1%
NP-40, 1 mM phenylmethylsulfonyl fluoride and 0.1% sodium dodecyl
sulphate, subjected to SDS-PAGE, and electro-transferred onto PVDF
membranes.

2.3. Evaluation of autophagy by GFP-LC3 redistribution

After 24 h of culture, ACFs were transduced with an adenovirus
encoding the fusion protein GFP-LC3, with a multiplicity of infection
(MOI) of 100. This adenovirus was kindly donated by Dr. Sharon
Tooze (London Research Institute, Cancer Research UK, England) [19].
Subcellular distribution of GFP-LC3 was monitored by standard
fluorescence microscopy. ACFs evidencing autophagic vacuolization
were counted using a Zeiss Axioscope 20 fluorescence microscope at
40× magnification. Vacuolization index was calculated by counting
the number of cells with GFP-LC3 translocation as a percentage of the
total number of fluorescent cells (counted independently by P.A-U.
and R.T.) [20].

2.4. Evaluation of autophagy by electron microscopy

Preparation of samples for electronmicroscopy andmorphometric
measurements were performed as described [21]. The number of
autophagic vacuoles was counted under the electron microscope
(EM-109, Zeiss) by systematically screening the sections at 12,000×
using grid squares as sampling units as previously described [22]. Five
grid squares were screened for each sample. The number of vacuoles
per cell profile was then counted for each grid square separately.

2.5. Evaluation of autophagy by endogenous levels of LC3-II by
immunowesternblot

ACFs were exposed to the different agonists for the indicated
times. Cell lysates were prepared using 10 mM Tris–HCl pH 7.5,
10 mM EDTA, 0.4% deoxycholate, 1% NP-40, 1 mM phenylmethylsul-
fonyl fluoride and 0.1% sodium dodecyl sulphate. Twenty micrograms
of protein from total cell lysates were analyzed via SDS–PAGE (15%).
Proteins were transferred onto a PVDF membrane and immuno-
blotted with commercially available specific antibodies.

2.6. Radio-ligand binding assay

[3H]-Dihydroalprenolol (DHA) binding assays were performed on
membranes of ACFs as described in [23]. For competitive binding
experiments, [3H]-DHA (15 nM) was used as labeled compound. Non-
labeled b-adrenergic antagonists: nonspecific b-AR propanolol
(1 mM), b1-AR atenolol (1 mM) and b2-AR ICI-118,551 (1 mM)
were used to confirm the subtype of adrenergic receptor.

2.7. Reagents and treatments

Al culture mediums were purchased from GIBCO. Ketamine,
xylazine, collagenase, hyaluronidase, E64d, pepstatin, rapamycin,
and secondary antibodies coupled to horseradish peroxidase were
purchased from Sigma Chemicals Co (St. Louis, MO). Fetal Bovine
Serum (FBS) was from Hyclone. Antibodies against LC3, b-tubulin and
collagen-I were purchased from Cell Signaling Technology (Beverly,
MA). Antibodies against GFP and vimentin were from Abcam (Cam-
bridge, UK). Nutritional stress was induced by incubation of ACFs in
serum/amino acids-free Earle's balanced salt solution. The concen-
tration of the different treatments, unless otherwise indicated, was:
Norepinephrine [10 μM], Isoproterenol [10 μM], Atenolol [1 mM],
Propanolol [1 mM], ICI-118,551 [10 μM], Rapamycin [100 nM], E64d
[10 μg/ml], pepstatin A [10 μg/ml].

2.8. Statistical analysis

Data are presented as mean±SD of at least, 3 independent
experiments. Student t test for comparisons between 2 groups, and
one-way ANOVA followed by a Tukey's post hoc test, for multigroup
comparisons, were used. Significance was accepted at pb0.05.

3. Results

3.1. Catecholamines induce positive autophagic flux in cultured cardiac
fibroblasts

Transmission electron microscopy (TEM) provides a sine qua non
methodology for the certain assessment of autophagosome formation
[24]. Additionally, the type-II microtubule-associated protein 1 light
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chain 3 (LC3-II) is widely used as a marker of autophagy, because its
lipidation and specific recruitment to autophagosomal membranes
provides a shift from diffuse to punctate staining, and increases its
electrophoretic mobility on gels compared to the terminally-unpro-
cessed form LC3-I [25,26]. Here we used three alternative approaches
to determine whether catecholamine stimulation induces autophagy;
first, we monitored autophagic puncta by means of exogenously
introduced GFP-LC3 with an adenoviral transduction, we also
evaluated endogenous LC3 processing via immunowesternblot, and
we further confirmed autophagosome formation by TEM. Subcellular
redistribution of GFP-LC3 into autophagic puncta was evaluated in
ACFs treated for 2–48 h with catecholamines, rapamycin and
nutritional stress. Under these different conditions, a marked increase
in punctate fluorescent dots per cell (white arrows) was evidenced,
whereas untreated cells (maintained in complete medium) displayed
a diffusely distributed GFP-LC3 (Fig. 1A). Quantification of the
percentage of GFP-LC3 vacuolizated cells revealed a significant
increase in autophagic puncta after already at 2 h of catecholamine
treatment, reaching levels comparable to rapamycin- or starvation-
treated cells at 24 h (Fig. 1B). Given that the expression of exogenous
GFP-LC3 could lead to false positives of LC3 aggregation, we evaluated
the processing of endogenous LC3-I in catecholamine-treated cells by
immunowesternblot. Both, the b1/b2 agonist isoproterenol (ISO) and
norepinephrine (NE) led to a significant increase in LC3 lipidation at
24 and 48 h (Fig. 1C). Quantification of the LC3-II/LC3-I ratio can lead
to misinterpretations of LC3 processing. This results from the fact that
at initial stages of autophagosome formation LC3-II increases and LC3-
I is subject to de novo synthesis; but during later stages of autophagy,
LC3-II decreases due to lysosomal degradation and LC3-I decreases
due to an arrest of its synthesis, as well as by its own processing/
lipidation [27]. For this reason, we quantified the LC3-II ratio over
tubulin, whose levels are not affected during autophagic degradation.
ACFs treated with ISO and NE displayed a significant increase in the
LC3-II/tubulin ratio when compared to control cells, in a similar way
to rapamycin-treated cells (Fig. 1D). In order to further corroborate
autophagosome formation, we performed TEM analysis of catechol-
amine-treated ACFs. Both ISO and NE led to the formation of double-
membraned early autophagosomes (marked with white arrows), as
well as single-membraned degradative autolysosomes (marked with
black arrows), whereas in control cells these structures were almost
undetectable (Fig. 1E). Quantification of the number of autophagic
vacuoles per cell revealed a significant increase in catecholamine- and
rapamycin-treated cells, as compared to untreated cells (Fig. 1F).
These combined results strongly suggest that catecholamines induce
the formation of autophagosomes in ACFs. However, an increase in
the number of autophagosomes can result from an induction of the
autophagic process (known as on-rate autophagic flux), as well as
from an arrest of their lysosomal fusion/degradation (known as off-
rate autophagosome accumulation) [24]. In order to discriminate
between these two possibilities, we subjected ACFs to treatment with
catecholamines in the presence of E64d and Pepstatin A (E/P), both of
which are known to inhibit lysosomal acidic proteases, thereby
arresting the degradation of LC3-II. Under these conditions, an
increase in LC3-II levels can only account for its accumulation
resulting from the generation and impaired-degradation of autopha-
gosomes, and therefore fits into “on-rate” autophagic flux [24,27,28].
Immunofluorescence studies with an antibody that recognizes
preferentially the lipidated form of endogenous LC3, revealed an
increased accumulation of immunostained LC3-II puncta in ACFs
treated with ISO and E/P, in comparison to cells treated with ISO alone
(Fig. 2A). In a similar approach, we measured LC3 processing via
immunowesternblot after ISO and NE treatment, which accordingly
demonstrated a higher accumulation of LC3-II when lysosomal
degradation is impaired by E/P treatment (Fig. 2B). Under these
conditions, the quantification of the LC3-II/tubulin ratio after ISO
treatment revealed a 6-fold increase in LC3-II accumulated levels
(Fig. 2C), compared to the 3-fold increase in the absence of E/P
(Fig. 1D), which is indicative of an enhanced formation of autophago-
somes induced by catecholamines, rather than just an impairment of
autophagosome degradation. Finally, in order to corroborate that
catecholamines induce autophagosome formation, we subjected ACFs
to treatment with ISO in combination with 3-metyhladenine (3-MA),
which impairs autophagosome formation by inhibiting the class-III
phosphatidylinositol-3-kinase (PI3K-III) that catalyzes phagophore
nucleation and elongation [29]. ACFs treated with ISO and 3-MA
displayed an LC3 processing equivalent to untreated cells (Fig. 2D and
F), further confirming the pro-autophagic effects of catecholamines in
these cells. Altogether, these results demonstrate that catecholamines
strongly induce “on-rate” autophagic flux via canonical PI3K-III-
mediated mechanisms of autophagosome formation.

3.2. Specific activation of b2-AR leads to cardiac fibroblast autophagy

The presence of b-AR in cardiac fibroblasts has been proposed
before [16,30]. In order to validate these premises, we evaluated the
expression of b-AR in our ACFs setting by performing radio-ligand
studies. Binding assays demonstrated that the radioactivity of [3H]-
dihydroalprenolol (DHA), which binds to b-AR, was displaced by the
non-selective b-AR antagonist propanolol (Fig. 3A). Accordingly, GFP-
LC3 processing induced by ISO or NE was completely blocked by
propanolol (Fig. 3B and C). Next, we evaluated the expression of b2-
ARs in ACFs, which so far have been proposed as the predominant b-AR
isoform expressed in cardiac fibroblasts [14,31]. Binding of radiola-
belled [3H]DHA was displaced by propanolol and by the b2-AR specific
antagonist ICI-118,551, but not by atenolol, which specifically blocks
b1-ARs (Fig. 4A). The dissociation constant for [3H]DHA binding sites
was 23±9 nM; whereas its density was 32±4 fmol/mg protein.
Collectively, these results confirm the predominant expression of b2-
AR in ACFs. Therefore, in order to correlate the autophagic effects of
catecholamines to the specific activation of b2-AR, we monitored LC3
processing and GFP-LC3 redistribution. The effects of ISO upon
endogenous LC3 processing were abolished by the b2-AR antagonist
ICI-118,551, but were unaffected by the b1-AR antagonist atenolol
(Fig. 4B and C). In a similar way, ICI-118,551 but not atenolol, was able
to abrogate GFP-LC3 redistribution into autophagic puncta induced by
ISO (Fig. 4D and E). Given that the b2-AR antagonist ICI-118,551
completely blocked the effects of ISO (unspecific b-AR agonist), and
that atenolol showed no effect, these results validate the predominant
expression and functionality of b2-ARs in ACFs. In order to irrevocably
establish that the b2-AR isoform mediates ACF autophagy, we treated
ACFs with the specific b2-AR agonist salbutamol, and assayed
endogenous LC3 processing via immunowesternblot (Fig. 4F). Salbu-
tamol treatment led to a significant increase in the LC3-II/tubulin ratio
in a dose-responsive fashion, with a maximal effective response at the
micromolar range (Fig. 4G). Altogether, these results confirm that ACFs
express predominantly the b2-AR isoform, and that its activation by
catecholamines, or pharmacological agonists positively regulates
autophagy.

3.3. Beta2-adrenergic receptor promotes collagen degradation via
autophagy

Reportedly, a physiological outcome of b2-AR activation in
cardiac fibroblasts is the regulation of collagen secretion [17]. In
order to evaluate the physiological effects of b2-AR-mediated
autophagy, we monitored the degradation of collagen type I,
which is the principal type of collagen fiber present in inner
organs. Immunofluorescence studies with antibodies against lyso-
somal associated membrane protein 1 (LAMP1) and collagen-I
revealed that treatment with ISO strongly increased the co-
localization of collagen with lysosomes (Fig. 5A), which suggests
that catecholamines regulate collagen-I degradation via autophagy.
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Fig. 2. Catecholamines induce “on-rate” autophagic flux. Panel A: Adult cardiac fibroblasts (ACFs) were either maintained in complete medium, subjected to nutritional stress, or
treated with isoproterenol (ISO) for 24 h in the absence or presence of E64d+Pepstatin A (E/P). Confocal images of immunostained LC3-II and phalloidin are shown. High LC3-II
staining is indicative of increased autophagosome formation. Panel B: Immunowesternblot analysis of ACFs maintained in complete medium and treated with ISO, rapamycin (RAP)
or norepinephrine (NE), either in the absence or presence of E/P. A representative of 3 independent experiments is shown. Panel C: Quantification of the LC3-II/tubulin ratio,
normalized as fold over control. Panel D: Immunowesternblot analysis of ACFs maintained in complete medium and treated with ISO, in the absence or presence of the autophagy
inhibitor 3-methyladenine (3-MA). Panel E: Quantification of the LC3-II/tubulin ratio, normalized as fold over control. Results shown are mean±S.D. of three independent
experiments (***pb0.001 vs. control, **pb0.01 vs. control, *pb0.05 vs. control, ##pb0.01 vs. E/P, #pb0.05 vs. E/P in C, #pb0.05 vs. ISO in E).
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In order to evaluate this possibility, we quantified protein levels of
collagen-I normalized to vimentin, an intermediate filament that is
a fundamental component of the cytoskeleton. Treatment with ISO
Fig. 1. Catecholamines induce autophagy in cultured cardiac fibroblasts. Panel A: Adult rat ca
(ISO), norepinephrine (NE), rapamycin (RAP) or subjected to nutritional stress (NS). Fluor
independent experiments; white arrows indicate autophagic cells. Panel B: ISO, NE, RAP and
Panel C: Immunowesternblot analysis of endogenous LC3-II conversion in ACFs. Cells were tr
anti-LC3 and anti-b-tubulin antibodies. Panel D: Ratio of LC3-II/tubulin normalized as fold o
stimulated with ISO, NE or RAP for 24 h and analyzed by TEM.White and black arrows are in
of three experiments. Panel F. Quantification of autophagic vacuoles per TEM cell profile. Re
and *pb0.05 vs. control).
led to a significant reduction of collagen-I levels (Fig. 5B), and the
inhibition of autophagic flux with E/P rescued collagen degradation
to control levels (Fig. 5B and C). Overall, our data highlights the
rdiac fibroblasts (ACFs) expressing GFP-LC3 were treated for 2-48 h with isoproterenol
escent images (40×) of 24 h-treated cells are shown, and are representative of three
NS increased the frequency of GFP-LC3 vacuolizated cells in a time-dependent manner.
eated with ISO, NE, Rap or NS for 24-48 h. Total protein extracts were analyzed by using
ver control is shown. Panel E: Detection of autophagosomes by TEM in ACFs. Cells were
dicative of autophagosomes and autolysosomes, respectively. Images are representative
sults shown are mean±S.D. of three independent experiments (***pb0.001; **pb0.01
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Fig. 3. [3H]-Dihydroalprenolol (DHA) competition curves and displacement assays in
cultured cardiac fibroblasts. Panel A: Displacement curve for b-adrenergic receptors
(b-AR)using 15 nM radiolabelled [3H]-DHA for binding, and propanolol (ranging from
1 nM to 1 mM) for displacement. Panel B: Immunowesternblot analysis of total lysates
fromGFP-LC3 expressing adult cardiacfibroblasts (ACFs)maintained in completemedium
and treated with isoproterenol (ISO) or norepinephrine (NE), either in the absence or
presence of 1 mMpropanolol (PROP). Representative blots of 3 independent experiments
using GFP and b-tubulin antibodies are shown. Panel C: Quantification of the GFP-LC3-II/
tubulin ratio, normalized as fold over control. Results shown are mean±S.D. of three
independent experiments (*pb0.05 vs. control).
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pro-autophagic effects of catecholamines and b2-AR activation,
which contribute to the degradation of collagen in the cardiac
fibroblast.

4. Discussion

The results from this and previous reports [14,16,17,30–32]
indicate that adult rat cardiac fibroblasts (ACF) predominantly
express the b2-AR isoform. Here in particular, we demonstrate that
b2-AR activation leads to a strong autophagic response, which
increases autophagosome formation and degradation, therefore
fitting into the classification of “on-rate” or degradative autophagic
flux. These effects were observed via transmission electron
microscopy, fluorescent microscopy studies of GFP-LC3 subcellular
redistribution, and endogenous LC3 processing/lipidation assayed
by immunowesternblot. Importantly, the pro-autophagic effects of
b2-AR activation led to an increased degradation of collagen-I, an
effect previously unexplored in the contribution of catecholamines
to the regulation of cardiac collagen homeostasis.

Despite the relevant role that fibroblasts play in heart remodel-
ing, nothing is known concerning the effects of b-adrenergic
stimulation on cardiac fibroblast autophagy. The most fundamental
question for autophagy in heart disease is whether its role is
harmful or protective, although severity and duration of the
autophagic response, or the nature of the autophagic substrate
may determine the patho-physiological outcome [4]. This dose- and
context-dependent role of autophagy in heart disease poses special
challenges. At present, it is unknown how long one can activate
autophagy without detrimental consequences. Experimental stud-
ies concerning autophagy in the heart have been primarily focused
in cardiomyocytes, using ischemia/reperfusion models associated to
nutritional stress [33]. In this study, we demonstrate that serum
withdrawal, in a concentration dependent manner, triggers cardiac
fibroblast autophagy (Supplementary Fig. 1), however we did not
focus our work in studying the adaptive or detrimental effects of
cardiac fibroblast autophagy induced by nutritional insults. Here we
evidence the induction of autophagy as a novel effect of adrenergic
stimulation in cardiac fibroblasts, as demonstrated by the punctate
GFP-LC3 distribution in the cytoplasm and the corresponding
increase in GFP-LC3 vacuolated cells (Fig. 1B). This response was
achieved rapidly and was sustained, ranging from 2 h until 48 h,
although it was weaker compared to rapamycin or nutritional
stress. We additionally monitored LC3 processing/lipidation via
immunowesternblot. Cardiac fibroblasts treated with adrenergic
agonists displayed increased LC3-II levels, which correlates with
enhanced autophagosome formation. In this response, rapamycin
was again more effective as inducer of LC3 conversion (Fig. 1D).
Finally, we corroborated autophagosome formation via TEM, and
we observed that catecholamines and rapamycin increased the
number of early double-membraned autophagy vacuoles, but
importantly, the increase in the number of single-membraned late
autophagic vacuoles was more distinguishable in catecholamines-
than in rapamycin-treated ACFs (Fig. 1E), which evidences that
catecholamines trigger positive autophagic flux, as we further
proved by different methodological approaches including confocal
microscopy and immunowesternblot (Fig. 2).

The present study shows that adult rat cardiac fibroblast
predominantly express b2-AR. Accordingly, previous studies pro-
vide values of Kd and Bmax that agree with the data from our
radioactively labeled binding studies [34,35]. However, an effect of
b2-AR upon cardiac fibroblast autophagy has not been established
until now. The increase in LC3-II levels, produced by b2-adrenergic
stimulation, was determined to be a critical component for
autophagy induction. By itself, isoproterenol caused a significant
increase in LC3-II levels compared with non-treated controls, as
well as an increase in autophagic puncta, in a concentration
dependent manner (Supplementary Fig. 2). The same effect was
observed with salbutamol, a specific b2-adrenergic agonist
(Fig. 4G). However, using three methods to evaluate autophagy,
namely GFP-LC3 subcellular redistribution (Fig. 4D and E),
endogenous LC3/tubulin ratio (Fig. 4B and C), and GFP-LC3 levels
by immunowesternblot (Fig. 3B and C), we show that only in cells
that were pretreated with propanolol (unspecific b-AR antagonist),
or ICI-118,551 (specific b2-AR antagonist), but not with atenolol
(specific b1-AR antagonist), autophagy was blocked, which is
indicative that b2-AR activation triggers autophagy.

In cardiac myocytes, b-adrenergic stimulation has been reported
to inhibit autophagy [36,37]. Although these results are different to
our findings, they have been made in whole heart where b1-
adrenergic is the main receptor on cardiac myocytes, therefore, the
autophagic response depends primarily on the cellular type
involved. Isolated cardiomyocytes from Atg5 deficient mouse
heart display increased sensitivity to the b-AR agonist isoproterenol
compared to wild type cells [38]. Moreover, isoproterenol treat-
ment for 7 days leads to left ventricular dilation and cardiac
dysfunction in autophagy deficient mice but not in wild type mice,
suggesting that autophagy protects cells against excessive b-
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Fig. 4. Specific activation of beta2-adrenergic receptors leads to cardiac fibroblast autophagy. Panel A: Displacement assays for the b2-adrenergic receptor using [3H]-DHA (15 nM,
black bar), and displaced with propanolol (1 mM, white bar), ICI-118,511 (10 μM, light gray bar) or atenolol (1 mM, gray bar), respectively. Panel B: Immunowesternblot analysis of
total lysates from adult cardiac fibroblasts (ACFs) maintained in complete medium and treated with isoproterenol (ISO), either in the absence or presence of 1 mM atenolol (ATE) or
10 μM ICI-118,511 (ICI). Representative blots of 3 independent experiments using LC3 and b-tubulin antibodies are shown. Panel C: Quantification of the LC3-II/tubulin ratio,
normalized as fold over control. Panel D: ACFs expressing GFP-LC3 were treated for 24 h with complete medium, or isoproterenol (ISO) combined with 1 mM ATE or 10 μM ICI,
respectively. Representative fluorescent images (40×) of three independent experiments are shown. Panel E: Quantification of the percentage of GFP-LC3 vacuolizated cells, from the
experiments performed in C. Panel F: Immunowesternblot analysis of total lysates from ACFs treated with increasing concentrations of salbutamol, as indicated. Panel
G: Quantification of the LC3-II/tubulin ratio, normalized as fold over control. Results shown are mean ± S.D. of three independent experiments (***pb0.001 vs. control, **pb0.01 vs.
control, *pb0.05 vs. control, ##pb0.01 vs. ISO alone, #pb0.05 vs. ISO alone).
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adrenergic stimulation. In cardiac fibroblasts, autophagy may
function as a defensive mechanism against high adrenergic
stimulation. To date, very few studies have evaluated the physio-
logical outcome of specific b2-AR activation in cardiac fibroblasts in
vitro. Adrenergic stimulation in cardiac fibroblast triggers cell
proliferation [16], activate MAPKs [32,39], increases the production
of nitric oxide (NO) [31], increases DNA synthesis [14], and notably,
reduces collagen secretion [17]. Although we did not evaluate
extracellular collagen secretion here, we observed that the specific
activation of b2-AR in cardiac fibroblasts strongly promotes the
autophagic degradation of intracellular collagen. Thus, we speculate
that autophagy induced by overactive adrenergic stimulation might
additionally contribute to reduce fibrosis by the regulation of the
extracellular matrix. Looking beyond, modulation of autophagy by
adrenergic stimulus could be considered as a pharmacological
target, a notion that represents an interesting subject for further
investigation.

In summary, the results presented here evidence the autophagic
effects of b2-adrenergic receptor, which is the predominant isoform
present in adult rat cardiac fibroblasts. By degrading collagen,

image of Fig.�4


Fig. 5. Beta2-adrenergic receptor stimulation induces autophagy of collagen-I. Panel A: Adult cardiac fibroblasts (ACFs) were treated or not with isoproterenol (ISO) for 24 h and
fixed. Confocal images of immunostained collagen-I and lysosomal associated protein 1 (LAMP1) are shown, indicative of lysosomal localization of collagen-I. Panel B:
Immunowesternblot analysis of collagen-I and vimentin of total lysates from ACFs treated with ISO for 24 h in the absence or presence of E64d/Pepstatin A. Panel C: Quantification of
the collagen-I/vimentin ratio, normalized to control. Results shown are mean±S.D. of three independent experiments **pb0.01 vs control, ##pb0.01 vs. ISO alone).
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autophagy might contribute to prevent fibrosis induced by
pathological adrenergic stimulation.
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